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Abstract
We applied the finite-size scaling method using the B-splines basis set to construct the stability
diagram for two-electron atoms with a screened Coulomb potential. The results of this method
for two-electron atoms are very accurate in comparison with previous calculations based on
Gaussian, Hylleraas and finite-element basis sets. The stability diagram for the screened
two-electron atoms shows three distinct regions, i.e. a two-electron region, a one-electron
region and a zero-electron region, which correspond to stable, ionized and double ionized
atoms, respectively. In previous studies, it was difficult to extend the finite-size scaling
calculations to large molecules and extended systems because of the computational cost and
the lack of a simple way to increase the number of Gaussian basis elements in a systematic
way. Motivated by recent studies showing how one can use B-splines to solve Hartree–Fock
and Kohn–Sham equations, this combined finite-size scaling using the B-splines basis set
might provide an effective systematic way to treat criticality of large molecules and extended
systems. As benchmark calculations, the two-electron systems show the feasibility of this
combined approach and provide an accurate reference for comparison.

(Some figures may appear in colour only in the online journal)

1. Introduction

Weakly bound systems represent an interesting field of
research in atomic and molecular physics. The behaviour of
systems near a binding threshold is important in the study
of ionization of atoms and molecules, molecule dissociation
and scattering collisions. Since the pioneering works of
Bethe [1] and Hylleraas [2] confirming the existence of the
negative hydrogen ion H−, the study of the stability of
the ground state of atomic and molecular negative anions
becomes an active field of research. New phenomena appear
when the Coulomb interaction is screened and the long-
range electrostatic interactions turn to short-range potentials.

A simple model to describe the effect of the screening in
the Coulomb potential is the Yukawa potential, where an
exponential decay is introduced: 1/r → exp (−r/D)/r,
where D is a positive constant. The Yukawa potential has been
used in many branches of physics, for example, to describe
interactions in dusty plasmas where charged dust particles
are surrounded by plasma [3], liquid metals [4] and charged
colloidal particles [5]. Two-electron systems interacting via
Yukawa potentials were the subject of recent research, studying
the bound states using the Hylleraas basis set [6–10] and
B-spline expansions [11]. Also, scattering processes were
recently presented [12] using Yukawa potentials.
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To examine the near-threshold behaviour, the finite-size
scaling (FSS) approach is needed in order to extrapolate results
obtained from finite systems to the complete basis set limit.
FSS is not only a formal way to understand the asymptotic
behaviour of a system when the size tends to infinity, but
a theory that also gives us numerical methods capable of
obtaining accurate results for infinite systems by studying the
corresponding small systems [13–24]. Applications include
expansion in Slater-type basis functions [22], Gaussian-
type basis functions [25] and, recently, finite elements [26].

Here, we combine FSS with the B-splines expansion
to calculate the stability diagram for two-electron atoms
with a screened Coulomb potential. The B-spline functions
Bi(r), i = 1, ns, form a basis for piecewise polynomial
functions that are polynomials of degree (ks − 1) in each
interval and whose derivatives up to order (ks − 2) are
continuous at the interior knots and have been increasingly
used in atomic and molecular physics [27–31]. Our results
show that the B-splines functions are very efficient in
performing FSS to calculate the critical parameters and the
stability diagram.

The rest of the paper is organized as follows. In section 2,
we present FSS with a B-splines basis followed by the two-
electron atom, as a benchmark calculation in section 3. In
section 4, we present our main results for the screened two-
electron atoms. Finally, in section 5, we discuss our results and
conclusions.

2. Finite-size scaling with B-splines

Here, we briefly introduce the FSS (for more details, see [22])
and how to perform calculations using B-splines. The FSS
method is a systematic way to extract the critical behaviour of
an infinite system from an analysis on finite systems [22]. It is
efficient and accurate for the calculation of critical parameters
for a few-body Schrödinger equation.

In our study, we have a Hamiltonian of the following form:

H = H0 + Vλ, (1)

where H0 is λ-independent term and Vλ is the λ-dependent
term. We are interested in the study of how the different
properties of the system change when the value of λ varies. A
critical point λc will be defined as a point for which a bound
state becomes absorbed or degenerate with a continuum. We
also define a critical exponent α by the asymptotic behaviour
of the ionization energy E(λ) − Eth ∼ (λ − λc)

α , where we
assume that the threshold energy Eth does not depend on λ.
In the first example, the He-like atoms, we have only one
parameter, λ while for the second case, the screened two-
electron atoms, we have two parameters λ1 and λ2. To perform
the FSS calculations, we expand the exact wavefunction in a
finite basis set and truncate this expansion at some order N.
The finite size corresponds to the number of elements in a
complete basis set used to expand the exact eigenfunction of
a given Hamiltonian. The ground-state eigenfunction has the
following expansion: �λ = ∑

n an(λ)φn, where n is the set of
quantum numbers. We have to truncate the series at order N,

and the expectation value of any general operator O at order
N is given by

〈O〉N =
N∑

n,m

a(N)
n a(N)

m On,m, (2)

where On,m are the matrix elements of O in the basis set {φn}.
In this study, we used the B-splines basis, the normalized

one-electron orbitals are given by

φn(r) = Cn
B(k)

n+1(r)

r
, n = 1, . . . , (3)

where B(k)

n+1(r) is a B-splines polynomial of order k. The
numerical results are obtained by defining a cutoff radius R,
and then, the interval [0, R] is divided into I equal subintervals.
B-spline polynomials [31] (for a review of applications of B-
splines polynomials in atomic and molecular physics, see [33])
are piecewise polynomials defined by a sequence of knots
t1 = 0 � t2 � · · · � t2k+I−1 = R and the recurrence relations

Bi,1(r) =
{

1, if ti � r < ti+1,

0, otherwise,
(4)

Bi,k(r) = r − ti
ti+k−1 − ti

Bi,k−1(r) + ti+k − r

ti+k − ti+1
Bi,k−1(r) (k > 1).

(5)

In this work, we use the standard choice for the knots in atomic
physics [33] t1 = · · · = tk = 0 and tk+I = · · · = t2k+I−1 = R.
Because we are interested in FSS, we choose an equidistant
distribution of inside knots. The constant Cn in equation (3) is a
normalization constant obtained from the condition 〈n|n〉 = 1:

Cn = 1[∫ R0

0

(
B(k)

n+1(r)
)2

dr
]1/2 . (6)

Because B1(0) �= 0 and BI+k−1(R) �= 0, we have
N = I + k − 3 orbitals corresponding to B2, . . . , BI+k−2. In all
the calculations, we used the value k = 5, and we do not write
the index k in the eigenvalues and coefficients.

To obtain the numerical values of the critical parameters
(λc, α) for the energy, we define for any given operator O the
function

�O(λ; N, N ′) = ln
(〈
ON

λ

〉
/
〈
O

〉N ′

λ

)
ln(N ′/N)

. (7)

If we take the operator O to be H − Eth, and ∂H/∂λ, we
can obtain the critical parameters from the following function
[22]:

�α(λ, N, N ′) = �H (λ; N, N ′)
�H (λ; N, N ′) − � ∂H

∂λ
(λ; N, N ′)

, (8)

which at the critical point is independent of N and N ′ and takes
the value of α. Namely, for λ = λc and any values of N and
N ′, we have

�α(λc, N, N ′) = α. (9)

Because our results are asymptotic for large values of N, we
obtain a sequence of pseudocritical parameters (λN, αN ) that
converge to (λc, α) for N → ∞.
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3. Helium-like atoms

As a benchmark for FSS using B-splines, we calculate the
critical parameters of the two-electron atom with a standard
Coulomb potential. In this case, after a scaling with the nuclear
charge, the system has a unique parameter λ = 1/Z:

H = −1

2
∇2

r1
− 1

2
∇2

r2
− 1

r1
− 1

r2
+ λ

1

|r2 − r1| . (10)

The ground-state energy E0(λ1, λ2) and its corresponding
eigenvector |ψ0(1, 2)〉 will be calculated within the variational
approximation

|ψ0(1, 2)〉 � |�0(1, 2)〉 =
M∑

i=1

c( j)
i |	i〉,

c( j)
i = (c( j))i; j = 1, . . . , M, (11)

where |	i〉 must be chosen adequately and M is the basis set
size.

Since we are interested in the behaviour of the system near
the ground-state ionization threshold, we choose as a basis set
the s-wave singlets given by

|	i〉 ≡ |n1, n2; l〉 = (φn1 (r1) φn2 (r2))sY l
0,0(
1,
2) χs, (12)

where n2 � n1 � N. Also, we introduce a cutoff value lmax for
the angular momentum l � lmax and denote χs as the singlet
spinor, and Y l

0,0(
1,
2) are given by

Y l
0,0(
1,
2) = (−1)l

√
2l + 1

l∑
m=−l

(−1)mYl m(
1)Yl −m(
2),

(13)

i.e. they are eigenfunctions of the total angular momentum
with zero eigenvalue, and theYl m’s are the spherical harmonics.
Note also that Y l

0,0 is a real function since it is symmetric in
the particle index. The radial term (φn1 (r1)φn2 (r2))s has the
appropriate symmetry for a singlet state:

(φn1 (r1)φn2 (r2))s = φn1 (r1)φn2 (r2) + φn1 (r2)φn2 (r1). (14)

In general, the size M of a basis set defined for equations (11)–
(14) is M = N(N + 1)(lmax + 1)/2. For the radial orbitals, we
used normalized B-splines polynomial of order k

φn(r) = Cn
B(k)

n+1(r)

r
; n = 1, . . . , N = k + I − 3. (15)

The calculations in this section were performed with k =
5, R = 30 and lmax = 3.

In order to calculate the Hamiltonian matrix elements,
we expand the electronic Coulomb interaction in spherical
harmonics

1

|r2 − r1| =
∞∑

l=0

4π

2l + 1

rl
<

rl+1
>

l∑
m=−l

Y ∗
l,m(
1)Yl,m(
2). (16)

Because of the cutoff lmax, the matrix elements of this
expansion are nonzero only for l � 2lmax.

In our previous studies, the critical behaviour of the two-
electron atom was obtained by using the FSS approach with
Hylleraas [34] and Gaussian basis sets [35]. The FSS was
performed with a finite small basis set and then increased the
number of basis functions N in a systematic way. The B-splines

1 1.05 1.1

λ

0.6

0.8

1

1.2

ΓΝ

1 1.05 1.1

Figure 1. �N versus λ for two-electron atoms, for N = 20, . . . , 50.
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Figure 2. λN versus 1/N for N = 20, . . . , 55 for the two-electron
atom. The red point is the value of λc from [34].

Table 1. Comparison of λc and α for the ground-state energy of the
two-electron atom.

This work FSS (Hylleraas) [22] [37] Exact

λc 1.097 76 1.0976 1.097 88 −
α 0.9947 1.04 − 1

basis set in this sense is different. When N is changed, we are
not adding new functions, but the complete basis set is changed
in a way which is similar to the finite-element method [36].

Figure 1 shows the results for the plot �N as λ varies for
different values of N. Successive curves cross at pseudocritical
points. In figures 2 and 3, we observed the behaviour of the
pseudocritical parameters, λN and αN as a function of 1/N.
The two curves converged to the exact values, in complete
agreement with our previous [17, 22, 25] and recent results
[37]. The numerical values are shown in table 1. These accurate
results indicate that FSS can be combined with B-spline basis
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Figure 3. Critical exponent αN versus 1/N for N = 20, . . . , 55 for
the two-electron atom. The red point is the exact value α = 1.

to obtain critical parameters for the few-body Schrödinger
equation.

4. The screened two-electron atom

The Hamiltonian, in atomic units, takes the form

H = −1

2
∇2

r1
− 1

2
∇2

r2
− Z e−r1/D

r1
− Z e−r2/D

r2
+ e−|r2−r1|/D

|r2 − r1| ,

(17)

where Z is the nuclear charge and D > 0 is the Debye screening
length. The Hamiltonian takes a form more convenient for our
purposes after scaling with D, r → r/D and H → D2 H:

H = −1

2
∇2

r1
− 1

2
∇2

r2
− λ1

(
e−r1

r1
+ e−r2

r2

)
+ λ2

e−|r2−r1|

|r2 − r1| ,
(18)

where λ1 = Z D, and λ2 = D. The numerical results are
obtained using the same basis set as the Coulomb case
described in section 3, except the value of the cutoff radius,
that for the Yukawa potential we set R = 20.

For the Yukawa potential, we use Gegenbauer’s expansion
in spherical harmonics:

e−|r2−r1|

|r2 − r1| =
∞∑

l=0

4π
Il+1/2(r<)√

r<

Kl+1/2(r>)√
r>

×
l∑

m=−l

Y ∗
l,m(
1)Yl,m(
2), (19)

where Il+1/2 and Kl+1/2 are the modified Bessel functions of
the first and the second kind, respectively [38].

Since Eth does not depend on λ2, we calculate the scaling
function �N for given values of λ1 as a function of λ2. Figure 4
shows the results for the plot �N (λ1 = 1.5; λ2) as λ2 varies
for different values of N. All of the curves cross very close
to the critical point. In figure 5, we present the phase diagram
for the screened two-electron atoms with three distinct phases:

1.4 1.6 1.8 2
λ2

0.8

1

1.2

ΓΝ

1.4 1.6 1.8 2

0.8

1

1.2

Figure 4. �N (λ1 = 1.5; λ2) versus λ2 for the screened two-electron
atom, for N = 20, . . . , 50.

10 32 4

λ1

0

1

2

3

4

λ2

4
0

1

2

3

4

2 e-

1 e-

0 e-

Figure 5. Ground-state stability diagram for the screened
two-electron atom, the black line denotes the critical 2e− − 1e− line
calculated with FSS with N = 40, the dotted line denotes the
1e− − 0e− critical line and the dashed blue line denotes the lower
bound for the 2e− − 1e− line of [32]. The dot-dashed lines
correspond to the helium (dark green) and hydrogen (light green)
atoms, respectively.

the two-electron phase (2e−), one-electron phase (1e−) and
zero-electron phase (0e−), corresponding to stable, ionized
and double ionized atoms, respectively.

The dotted line λ1 = λ
(c)

1 � 0.84 corresponds to the
critical value of the one-electron Yukawa potential. Therefore,
there are no bound states for λ1 � λ

(c)

1 . For λ1 � λ
(c)

1 , the one-
body bound state is extended, and the method is applicable
until the size of the one-body state becomes of the order of
the cutoff radius R. For the value R = 20, we calculate the
1e−stability line for λ1 � 0.95.

The authors of [32] described the three different ground-
state stability diagrams that a two-parameter Hamiltonian with
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1 1.5 2 2.5 3

λ1

0.9

0.95

1

1.05

1.1
α N

=
40

1 1.5 2 2.5 3

Figure 6. Critical exponent αN versus λ1 for N = 40 for the
screened two-electron atom. The exact value is α = 1.

a short-range one-body potential could present. These cases are
(see figure 1 of this reference) (a) no 2e− − 0e− line, (b) exists
a finite 2e−−0e− line for 0 � λ2 � λ

(mc)

2 and (c) the 2e−−0e−

line is infinite. Also in this reference rigorous lower and upper
bounds for the 2e− − 1e− stability line are established. We
calculate these bounds for the Hamiltonian equation (18). The
lower bound is shown in figure 5. For the Yukawa potential,
the upper bound diverges for λ1 → λ

(c)

1 , and then, it is not
useful in this case.

Even our results suggest that the ground-state stability
diagram is of type (a). Large numerical instabilities could
appear for λ1 → λ

(c)

1 , and then, we can discard a type (c)
diagram, but we can not discard a type (b) diagram with a
small value of λ

(mc)

2 .
We note that the H− atom corresponds to the line λ2 = λ1

and the He atom to the line λ2 = λ1/2. These lines are also
indicated in figure 5. The critical screening values for H− and
He are DH− � 1.2969 and DHe � 0.4934, respectively.

In figure 6, we show how the critical exponent αN versus
λ1 for N = 40 for the screened two-electron atom converges
to the exact value, α = 1 [32].

5. Summary and conclusions

We have shown that the introduction of B-spline basis sets
in FSS calculations is very powerful in obtaining critical
parameters and stability diagrams for few-body systems.

This basis set presents very different characteristics than
the standard basis sets previously used in FSS-like Hylleraas
or Slater-type basis sets. B-splines are non-zero only on a small
interval, and changing the FSS parameter N (number of basis
functions) changes the complete basis set. In particular, we
used this basis set together with FSS to calculate the critical
parameter of the helium-like atom as a benchmark, finding very
accurate results. We then applied the method to the important
case of the ground-state stability diagram for a two-electron
atom interacting via a screened Coulomb potential. Also in this

case, FSS with a B-spline basis set proves to be an excellent
approach to obtain the critical behaviour for this two-parameter
Hamiltonian.

Our results show that the ground-state diagram of two-
electron atoms interacting via Yukawa potentials does not
present a 2e− − 0e− line. That is, the systems always
undergoes a 2e− − 1e− transition before losing both electrons
as the screening grows. Even the numerical results are not
accurate enough to discard a small 2e− − 0e− line. We discard
the existence of an infinite 2e− − 0e− line.

We have shown in previous works that FSS combined
with different basis functions (Hylleraas, Gaussian, Slater)
is a powerful method to obtain quantum critical parameters
for few-body systems [22]. However, these basis sets are not
useful to calculate critical parameters for large systems, or for
quantum phase transitions in infinite systems. A possible way
to apply FSS to study quantum phase transitions in materials
is to combine FSS with Hartree–Fock or density functional
approaches. In this direction, new efficient methods to
solve the Hartree–Fock equations using B-splines expansions
were recently established [39], and numerical codes are
available [27]. As a benchmark system, we started with the
two electron atoms. We show that indeed this can be done,
and we obtained very accurate quantum critical parameters.
Then, we went to a more difficult case, two-electron atoms
with screened Coulomb potentials. Getting all of the stability
and transition lines from two electrons to one electron to
zero electrons is numerically difficult to calculate. We have
shown that FSS with B-spline basis functions can construct
the full stability diagram. Our work is in progress to calculate
critical parameters for large i molecular and extended systems
by applying FSS with B-spline expansions of Hartree–Fock
equations.
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